Synthesis of Functionalized Lipids, and Their Use for a Tunable Hydrophobization of Nucleosides and Nucleic Acids

by Sergei Korneev and Helmut Rosemeyer*

Organic Chemistry I – Bioorganic Chemistry, Institute of Chemistry of New Materials, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 7, D-49076 Osnabrück (e-mail: helmut.rosemeyer@uos.de)

Dedicated to Prof. Dr. *Helmut Vorbrüggen*, Berlin, in admiration of his outstanding contributions to organic chemistry

Two series of functionalized single and double side-chained lipid molecules (*Schemes 1* and 2) were prepared. The compounds carry either terminal COOH, OH, or halogen substituents. Moreover, the double side-chained lipid **18** carries an internal alkyne functionality. The latter compound was used to hydrophobize thymidine at N(3) by base-catalyzed alkylation. Additionally, fully protected thymidine, **32**, was N(3)-alkylated with the double side-chained alcohol **9** applying *Mitsunobu* reaction conditions.

1. Introduction. – One of the major drawbacks of many chemotherapeutics is their insufficient penetration through cell membranes as well as the crossing of the blood–brain barrier due to their high hydrophilicity. This is particularly true for antisense and antigene oligonucleotides.

One method to overcome these problems is the introduction of lipophilic residues to the drug to render them hydrophobic and to improve their pharmacokinetics [1]. In the case of low-molecular-weight drugs, this kind of chemical modification is heading for the fulfilment of '*Lipinski*'s Rule of Five' [2]. The rule describes molecular properties important for a drug's pharmacokinetics in the human body, including their absorption, distribution, metabolism, and excretion, and is important for drug development where a pharmacologically active lead structure is optimized stepwise for increased activity and selectivity. One part of the rule is concerned with the drug's partition coefficient (log *P* between octan-1-ol and H₂O) within the range of -0.4 to +5.5. Herein, we describe the synthesis of a series of single and double side-chained lipids carrying different functional groups. *Via* these functional groups (halogene, COOR, COOH, OH, ammonium, and alkyne groups), the lipid residue can be introduced into chemotherapeutics such as nucleoside antimetabolites and others. Besides their synthesis, exemplary methods such as alkylation [3] and *Mitsunobu* reactions [4] for these introductions are presented.

2. Results and Discussion. – 2.1. *Syntheses of Double Side-Chained Lipids.* The first part of the manuscript describes the synthesis of a series of functionalized lipids carrying two octadecanyl chains. The syntheses are shown in *Scheme 1.*

© 2013 Verlag Helvetica Chimica Acta AG, Zürich

Reaction of dioctadecylamine (1) with methyl 2-bromoacetate (2) in the presence of dibenzo-[18]-crown-6 gave the pure ester 3 in almost quantitative yield. This was either saponified to yield the acid 4 or reduced with LiAlH_4 to give the alcohol 5. The latter was submitted to an *Appel* reaction with CBr_4 and Ph_3P to afford the bromo amine 6 in low yield. To extend the spacer between the OH group and the N-atom carrying the C-chains, the secondary amine 1 was reached with methyl acrylate (7) to furnish, in almost quantitative yield, the ester 8 which was further reduced with LiAlH_4 to give the lipophilic aminopropanol 9. Subsequent *Appel* bromination to produce the 3-bromopropyl derivative 10, however, was unsuccessful. NMR Spectroscopy revealed the formation of the quaternization product 11, an *N*,*N*-dialkyl-azetidinium bromide¹). This implies that the low yield in case of 6 is also due to the formation of a quaternization product, namely an *N*,*N*-dialkyl aziridinium bromide.

Next, the amine **1** was reacted with succinic anhydride (**12**) to give the acid **13**. This was converted to the ester **14** by reaction with Me_2SO_4 in the presence of K_2CO_3 . Compound **14** was then reduced with LiAlH₄ to yield the further extended alcohol **15a**, or with LiAlD₄ to give the deuterated lipophilized 4-aminobutanol derivative **16**. It should be noted that this way of labelling of the molecule allows introduction of four isotope atoms of H in a single synthetic step, which is important for the introduction of low radioactivity labels, such as tritium (³H₁). Moreover, compound **15a** was phosphitylated to the 2-cyanoethyl phosphoramidite **15b** ready to be used for a terminal hydrophobization of nucleic acids.

In a further reaction, the amine **1** was alkylated with 1,4-dichlorobut-2-yne (**17**) in the presence of Na_2CO_3 in benzene to afford, in 61% yield the alkynyl derivative **18**, besides the by-products **19–21**, each in low yield.

2.2. Syntheses of Single Side-Chained Lipids. Reaction of octadecylamine (22) with 3-bromoprop-1-yne (23) gave, in almost quantitative yield, the tertiary amine 24 (Scheme 2). Reaction of 22 with succinic anhydride (12) afforded the acid 25, which was further esterified to give 26. Treatment of the latter with LiAlH₄ (under the same conditions as for the reduction of 14 to 15) yielded surprisingly the *N*-alkylated pyrrolidine 28 instead of the expected alcohol 27. Reduction of the acid 25 with LiAlH₄ in THF at ambient temperature was attempted, however, it led to a reduction of COOH only, but not of the amide moiety, and gave the hydroxy amide 29 in 82% yield. Increasing of the reaction temperature to 65° furnished desired amino alcohol 27, but only in moderate yield of 23%. Fortunately, replacement of THF by Et₂O gave compound 27 in a high yield of 84%. Subsequent reaction of 27 with 23 gave the alkynylamino alcohol 30 in 61% yield.

2.3. *Hydrophobization of Thymidine.* The regioselective introduction of lipophilic hydrocarbon chains in a nucleoside, particularly in a nucleoside with biological activity, is a difficult synthetic task. Such lipophilic groups can principally positioned either at the heterocyclic base or at the glyconic moiety, and can be introduced by various methods, *e.g.*, by base-catalyzed alkylation with alkyl halides; for an overview of such reactions on purines, see [3] and literature cited therein.

Some exemplary alkylation reactions of thymidine (31) with two of the functionalized lipids described above, namely with compounds 9 and 18, are outlined

¹⁾ Spontaneous cyclization to azetidinium salt was also observed earlier [5].

in Scheme 3. The reaction of the unprotected thymidine with the alkyne 18 was performed in DMF/K₂CO₃ (direct alkylation) and gave the N(3)-alkylated compound 33, which can be further reacted with an azide in a Ru-catalyzed variant of the azide–alkyne cycloaddition (RuAAC; *Huisgen–Sharpless–Meldal* [3+2] cycloaddition of azides with internal alkynes). Dimethoxytritylation of 33 afforded the derivative 34 for further 3'-O-phosphitylation.

Based on the finding that the direct alkylation of thymidine (31) with compound 18 gave only a moderate yield of 33 (46%), the 5'-O-DMT-protected thymidine derivative 37 – prepared from 31 – was subjected to the alkylation with 18 (*Scheme 4*). However, the yield of the alkylated product 34 was found to be nearly the same (51%). Therefore, the totally, orthogonally protected derivative 32 was prepared and subjected to alkylation. This reaction gave the product 38 in high yield (95%). It was then deprotected with Bu_4NF in THF to provide the desired compound 34 in high yield (95%). Compound 34 (which was, therefore, prepared in three different ways: from 37, from 33, and from 38) was then reacted with 2-cyanoethyl *N*,*N*-diisopropylchlorophosphite in the presence of *Hünig*'s base to form the corresponding phosphoramidite

39, which is ready to be used for the preparation of oligonucleotides lipophilized at any position within the sequence.

In a further approach, alkylation of thymidine (31) was performed by a *Mitsunobu* reaction [4]. This type of alkylation is somewhat more versatile, because alcohols which are precursors of halides can be used. However, a protection of the nucleoside OH

groups is necessary. For this purpose, we first used also 5'-dimethoxytritylated thymidine **37** for a *Mitsunobu* reaction with the alcohol **9**, which led, however, to many by-products. Therefore, we also protected the 3'-OH group of **37** by a (*tert*-butyl)(dimethyl)silyl group (\rightarrow **32**). Reaction of compound **32** with the alcohol **9** in the presence of Ph₃P and diisopropyl azodicarboxylate (DIAD) gave in 70% yield the product **35**, which was subsequently desilylated with Bu₄NF to give compound **36**.

All compounds were characterized by ¹H- and ¹³C-NMR spectroscopy, including the DEPT-135 pulse technique for assignment of ¹³C resonances, as well as by elemental analyses or ESI mass spectrometry. An *N*-alkylation preferred over an *O*alkylation during the *Mitsunobu* reaction [4] was established by comparison of the recorded ¹³C-NMR chemical shifts with those of corresponding simulated spectra of both, the *N*- as well as *O*-alkylated compounds. However, an *O*-alkylation as side reaction is most probable.

In a forthcoming publication, the incorporation of the various phosphoramidites into oligonucleotides and applications thereof will be reported.

Experimental Part

General. Starting compounds and solvents were purchased from the appropriate suppliers and were used as obtained. *1,4-Dichlorobut-2-yne* (**17**) was prepared from but-2-yne-1,4-diol and SOCl₂ in pyridine as described in [6]. Reactions were carried out under Ar in a dry *Schlenk* flask. Column chromatography (CC): silica gel 60 (SiO₂; *Merck*, Germany). NMR Spectra: *AMX-500* spectrometer (*Bruker*, D-

Rheinstetten); ¹H: 500.14, ¹³C: 125.76, and ³¹P: 101.3 MHz; δ in ppm rel. to Me₄Si as internal standard for ¹H and ¹³C nuclei, and external 85% H₃PO₄ for ³¹P; *J* in Hz. ESI-MS: *Bruker Daltronics Esquire HCT* instrument (*Bruker Daltronics*, D-Leipzig); ionization was performed with a 2% aq. HCOOH soln. Elemental analyses (C, H, N): *VarioMICRO* instrument (Fa. *Elementar*, D-Hanau).

Methyl N,N-(*Dioctadecyl*)glycinate (**3**). N,N-*Dioctadecylamine* (**1**; 1.90 g, 3.65 mmol), *methyl* 2bromoacetate (**2**; 1.62 g, 10.6 mmol), dibenzo-[18]-crown-6 (10 mg), and Na₂CO₃ (1.93 g, 18.3 mmol) were suspended in benzene (50 ml) at r.t., and the suspension was stirred overnight under reflux (20 h). A second portion of **2** (0.56 g, 3.65 mmol) was added, and stirring under reflux was continued for further 10 h, until the reaction was complete as monitored by ¹H-NMR analysis (amine **1**: 2.95 ppm, product **3**: 3.34 ppm). The white suspension was filtered through a SiO₂ layer (1 cm) to separate the unreacted amine **1**, washed with benzene (2 × 30 ml), and concentrated *in vacuo* to give **3** (2.10 g, 97%). Slightly yellow crystalline mass²). TLC (hexane/Et₂O 1:1): R_f 0.60. M.p. 60–61°. ¹H-NMR (CDCl₃): 3.71 (*s*, MeO); 3.34 (*s*, CH₂COO); 2.58–2.55 (*m*, 2 CH₂CH₂N); 1.48–1.42 (*m*, 2 CH₂CH₂N); 1.28 (br. *s*, 60 H); 0.90 (*t*, *J* = 6.9, 2 Me). ¹³C-NMR (CDCl₃): 172.09 (C=O); 55.05 (NCH₂CH₂); 54.54 (NCH₂CO); 51.20, 51.16 (MeO); 31.90 (CH₂CH₂Me); 29.68, 29.61, 29.55, 29.31 (CH₂(CH₂)₃N); 27.47 (CH₂CH₂N); 27.37 (CH₂(CH₂)₂N); 22.65 (MeCH₂); 14.04, 14.03 (*Me*CH₂). ESI-MS: 594.7 ([*M*+H]⁺). Anal. calc. for C₃₉H₇₉NO₂ (594.07): C 78.85, H 13.40, N 2.36; found: C 78.59, H 13.50, N 2.24.

N,N-Dioctadecylglycine (**4**). Powder of **3** (2.97 g, 5 mmol) was added at once to a freshly prepared soln. of NaOH (0.40 g, 10 mmol) in H₂O (50 ml), and the resulting suspension was stirred at 95° overnight. White precipitate was removed by filtration, washed with Et₂O (3×5 ml), suspended in H₂O (20 ml), and carefully made acidic (pH 6) by addition of 5% HCl. The precipitate was collected, washed with H₂O, pressed, and dried in vacuum to furnish **4** (2.84 g, 98%). TLC (CH₂Cl₂/MeOH 10:1): R_f 0.43. M.p. 102–103° ([7]: 102–103°). ¹H-NMR (CDCl₃): 8.63 (br. *s*, 0.5 H, COOH); 8.15 (br. *s*, 0.5 H, COOH); 3.46 (*s*, CH₂CO); 3.06–3.03 (*m*, 2 CH₂N); 1.70–1.65 (*m*, 2 CH₂CH₂N); 1.25 (br. *s*, 60 H); 0.88 (*t*, *J* = 6.8, 2 Me). ¹³C-NMR (CDCl₃): 168.69 (COO); 54.17 (NCH₂); 31.94 (MeCH₂CH₂); 29.77, 29.70, 29.52, 29.38, 27.32 (CH₂CH₂N); 26.64 (CH₂(CH₂)₂N); 24.89, 22.69 (MeCH₂); 14.08 (Me) (¹H- and ¹³C-NMR are in agreement with those reported in [7]).

2-(*Dioctadecylamino*)*ethanol* (**5**). Ester **3** (2.24 g, 3.77 mmol) was dissolved in THF (150 ml), cooled in an ice-bath, and LiAlH₄ (0.57 g, 15 mmol) was added in portions under stirring within 3 min (gas evolution). The cooling bath was removed, and stirring was continued overnight at r.t. The mixture was cooled in an ice-bath, and MeOH (2.5 ml) was added dropwise to destroy the excess of LiAlH₄. The mixture obtained was concentrated *in vacuo* (25 Torr), suspended in CH₂Cl₂ (100 ml), and carefully treated with H₂O (40 ml) until the formation of a precipitate. The org. layer was separated, washed with H₂O (50 ml), dried (Na₂SO₄), and concentrated to afford **5** (2.0 g, 94%). Off-white solid²)³). TLC (SiO₂, Et₂O): R_f 0.26. M.p. 43–44°. ¹H-NMR (CDCl₃): 3.52 (t, J = 5.4, CH₂O); 3.1 (br. s, OH); 2.57 (t, J = 5.4, OCH₂CH₂N); 2.44 (t, J = 7.2, 2 CH₂CH₂CH₂N); 1.43 (m, CH₂CH₂CH₂N); 1.26 (br. s, 60 H); 0.89 (t, J = 6.9, 2 Me). ¹³C-NMR (CDCl₃): 58.28 (CH₂O); 55.54 (CH₂CH₂O); 53.90 (NCH₂(CH₂)₁₆); 31.93 (MeCH₂CH₂); 29.70, 29.66, 29.60, 29.36 (CH₂(CH₂)₃N); 27.45 (CH₂CH₂CH₂N); 27.24 (CH₂(CH₂)₂N); 22.68 (MeCH₂); 14.08 (Me). ESI-MS: 566.7 ([M + H]⁺).

(2-Bromoethyl)dioctadecylamine (6). PPh₃ (8.80 g, 33.6 mmol) was dissolved in a pre-cooled soln. of **5** (3.80 g, 6.71 mmol) in CH₂Cl₂ (180 ml) at 5°, followed by addition of CBr₄ (11.15 g, 33.6 mmol) in portions within 3 min. The resulting orange soln. was stirred at r.t. for 30 h. The mixture was concentrated, and **6** was isolated by CC (SiO₂ (100 g); hexane/CH₂Cl₂ 1:1 to 0:1) in low yield (0.43 g, 10%). TLC (SiO₂; hexane/CH₂Cl₂ 1:1): R_f 0.58. M.p. 69–71°. ¹H-NMR (CDCl₃): 3.38 (t, J = 7.5, CH₂Br); 2.88 (t, J = 7.5, BrCH₂CH₂N); 2.50 (t, J = 7.2, 2 (CH₂)₁₆CH₂N); 1.49–1.41 (m, 2 CH₂CH₂CH₂N); 1.27 (br. *s*, 60 H); 0.90 (t, J = 6.9, 2 Me). ¹³C-NMR (CDCl₃): 56.16 (BrCH₂CH₂); 54.48 (NCH₂(CH₂)₁₆); 31.91 (MeCH₂CH₂); 29.68, 29.64, 29.61, 29.52 (CH₂Br); 29.33, 27.35 (NCH₂CH₂CH₂) 27.21, 22.65 (MeCH₂); 14.05 (Me). ESI-MS (calc. 627(⁷⁹Br)): 548.7 ([M – HBr + H]⁺), 628.7 ([M(⁷⁹Br) + H]⁺), 630.6

²⁾ The crude product was pure enough to be used in the next step without further purification, however, it could be purified for anal. purpose by recrystallization from the appropriate solvent or by chromatography over SiO₂.

³) The alcohol **5** was only poorly characterized [8].

 $([M(^{81}Br) + H]^+)$. Anal. calc. for C₃₈H₇₈BrN (628.96): C 72.57, H 12.50, N 2.23; found: C 72.18, H 12.38, N 2.04.

Methyl N,N-*Dioctadecyl-3-aminopropanoate* (8). Compound 1 (0.93 g, 1.78 mmol) was added to a soln. of 7 (1.75 g, 20.3 mmol) in a mixture i-PrOH (14 ml)/CH₂Cl₂ (6 ml), and the resulting white suspension was stirred at 45° overnight. The mixture was filtered through a paper filter and concentrated *in vacuo* (10 Torr) to afford 8 (1.04 g, 96%). White solid mass²)⁴). TLC (SiO₂, hexane/Et₂O 1 : 1): R_f 0.58. M.p. 44–45°. ¹H-NMR (CDCl₃): 3.67 (*s*, MeO); 2.78 (*t*, *J* = 5.4, CH₂CO); 2.47–2.36 (*m*, 3 CH₂N); 1.48–1.36 (*m*, 2 CH₂CH₂CH₂N); 1.26 (br. *s*, 60 H); 0.89 (*t*, *J* = 6.9, 2 Me) (in a good agreement with those reported in [10]). ¹³C-NMR (CDCl₃): 173.35 (C=O); 54.00 (NCH₂(CH₂)₁₆); 51.42 (MeO); 49.42 (CH₂CH₂CO); 32.30 (CH₂CO); 31.90 (MeCH₂CH₂); 29.68, 29.64, 29.60, 29.33 (N(CH₂)₃CH₂); 27.50 (NCH₂CH₂CH₂); 27.19 (N(CH₂)₂CH₂); 22.66 (MeCH₂); 14.07 (*Me*CH₂). ESI-MS: 608.7 ([*M* + H]⁺). Anal. calc. for C₄₀H₈₁NO₂ (608.10): C 79.01, H 13.43, N 2.30; found: C 78.86, H 13.39, N 2.12.

3-(*Dioctadecylamino*)propanol (9). LiAlH₄ (0.26 g, 6.84 mmol) was added in portions within 2 min to a soln. of **8** (1.04 g, 1.71 mmol) in THF (45 ml), cooled in an ice-bath. The bath was removed, and stirring was continued overnight. The mixture was carefully treated with a soln. of MeOH (0.6 ml) in Et₂O (2 ml) with cooling in an ice-bath, until the gas evolution ceased. Org. solvents were removed *in vacuo*, and the residue was dissolved in CH₂Cl₂ (70 ml), washed with H₂O (3 × 30 ml), dried (Na₂SO₄), and concentrated to give **9** (0.98 g, 98%). White solid mass²)⁵). TLC (SiO₂, Et₂O): R_1 0.23. M.p. 48–49° ¹H-NMR (CDCl₃): 5.68 (*s*, OH); 3.79 (*t*, *J* = 5.3, CH₂OH); 2.63 (*t*, *J* = 5.3, CH₂CH₂CH₂OH); 2.38–2.43 (*m*, 2 (CH₂)₁₆CH₂N); 1.67 (*quint*., *J* = 5.3, CH₂CH₂CH₂OH); 1.53–1.40 (*m*, 2 (CH₂)₁₅CH₂CH₂N); 1.26 (br. *s*, 60 H); 0.89 (*t*, *J* = 6.5, 2 Me). ¹³C-NMR (CDCl₃): 64.82 (CH₂O); 55.36 (CH₂(CH₂)₂O); 54.22 (NCH₂(CH₂)₁₆); 31.90 (MeCH₂CH₂); 29.68, 29.64, 29.60, 29.33, 27.83 (CH₂CH₂O); 27.51 (NCH₂CH₂(CH₂)₁₅); 26.82 (N(CH₂)₂CH₂(CH₂)₁₄); 22.66 (MeCH₂); 14.06 (Me). ESI-MS: 580.7 ([*M* + H]⁺).

1,1-Dioctadecylazetidinium Bromide (**11**). Crystals of CBr₄ (320 mg, 1 mmol) were added to a precooled (ice-bath) soln. of **9** (116 mg, 0.2 mmol) and PPh₃ (260 mg, 1 mmol) in CH₂Cl₂ (13 ml), and the resulting mixture was stirred at the same temp. overnight. The yellow suspension was filtered through a SiO₂ layer (4 cm), and washed consecutively by CH₂Cl₂ (100 ml) and Et₂O (100 ml) to give in the second fraction light-yellow crystalline **11** (16 mg, 13%). TLC (SiO₂; CH₂Cl₂/Et₂O 4:1): R_f 0.64. ¹H-NMR (CDCl₃): 4.52–4.49 (*m*, NCH₂); 3.57–3.54 (*m*, NCH₂); 3.51–3.48 (*m*, 2 H); 2.87–2.79 (*m*, 2 H); 1.56 (br. *s*, 2 H); 1.34–1.26 (*m*, 60 H); 1.89 (*t*, *J* = 6.8, 2 Me). ESI-MS (calc. 641(⁷⁹Br)): 562.7 ([*M* – HBr + H]⁺), 642.6 ([*M*(⁷⁹Br) + H]⁺), 644.6 ([*M*(⁸¹Br) + H]⁺).

4-(*Dioctadecylamino*)-4-oxobutanoic Acid (13). Compound 1 (522 mg, 1 mmol) and Et₃N (202 mg, 2 mmol) were added consecutively to a stirred soln. of *succinic anhydride* (12; 150 mg, 1.5 mmol) in CH₂Cl₂ (10 ml), and the white suspension formed was stirred at 35° overnight. The resulting clear soln. was concentrated *in vacuo* and recrystallized from acetone (3 ml) to give 13 (600 mg, 96%). White powder. TLC (SiO₂; CH₂Cl₂/AcOEt 1:1): R_f 0.62. M.p. 68–69° (acetone; [7]: 63–64° (Et₂O)). ¹H-NMR (CDCl₃): 3.36–3.33 (*m*, NCH₂); 3.26–3.23 (*m*, NCH₂); 2.70 (*s*, COCH₂CH₂CO); 1.62–1.52 (*m*, 2 NCH₂CH₂); 1.28 (br. *s*, 60 H); 0.90 (*t*, *J* = 6.9, 2 Me). ¹³C-NMR (CDCl₃): 173.88 (COO); 172.55 (CON); 48.42, 46.80 (NCH₂); 31.90 (MeCH₂CH₂); 30.69 (NCOCH₂); 29.67, 29.63, 29.59, 29.57, 29.54, 29.52, 29.49, 29.33, 29.28, 28.81, 28.08, 27.61, 26.99, 26.87 (NCH₂CH₂CH₂); 22.65 (MeCH₂); 14.06 (Me) (¹H- and ¹³C-NMR are in agreement to those partly reported in [12]). ESI-MS: 622.7 ([*M* + H]⁺). Anal. calc. for C₄₀H₇₉NO₃ (622.08): C 77.23, H 12.80, N 2.25; found: C 77.12, H 12.89, N 2.08.

Methyl 4-(dioctadecylamino)-4-oxobutanoate (14). Me_2SO_4 (126 mg, 1 mmol) and K_2CO_3 (198 mg, 1.43 mmol) were added consecutively to a suspension of 13 (311 mg, 0.5 mmol) in acetone (4 ml), and the mixture was stirred at 55° overnight. The resulting white suspension was cooled to r.t., the precipitate was filtered off, washed with acetone (3 ml), and the filtrate was concentrated *in vacuo*. The residue was taken up in CH_2Cl_2 (5 ml), washed with aq. NH_3 (2 ml), to destroy the excess of Me_2SO_4 , and H_2O (2 × 3 ml), dried (Na_2SO_4), and concentrated to yield 14 (291 mg, 91%). Colorless oil, which solidified upon

⁴) Ester 8 was obtained in 42% yield, when the reaction was conducted in only CH₂Cl₂ according to [9].

⁵) No spectral data for the propanol **9** were reported in [11].

standing²). TLC (SiO₂; hexane/Et₂O 1:1): R_f 0.55. M.p. 29–30°. ¹H-NMR (CDCl₃): 3.70 (*s*, MeO); 3.31–3.29 (*m*, NCH₂); 3.26–3.23 (*m*, NCH₂); 2.70–2.67 (*m*, 2 H, COCH₂CH₂CO); 2.64–2.61 (*m*, 2 H, COCH₂CH₂CO); 1.61–1.48 (*m*, 2 NCH₂CH₂); 1.27 (br. *s*, 60 H); 0.90 (*t*, *J* = 6.9, 2 Me). ¹³C-NMR (CDCl₃): 173.72 (COO); 170.49 (CON); 51.62 (MeO); 47.85, 46.18 (NCH₂); 31.90, 29.67, 29.63, 29.58, 29.54, 29.42, 29.32, 28.94, 27.99, 27.79, 27.06, 26.92 (NCH₂CH₂CH₂); 22.65 (MeCH₂); 14.06 (Me). ESI-MS (calc. 635): 1294.2 ([2 *M* + Na]⁺), 658.7 ([*M* + Na]⁺), 636.7 ([*M* + H]⁺).

4-(*Dioctadecylamino*)*butan-1-ol* (**15a**). Powdered LiAlH₄ (106 mg, 2.8 mmol) was added in portions during 2 min to a pre-cooled (ice-bath) soln. of **14** (222 mg, 0.35 mmol) in THF (4 ml), and the resulting suspension was stirred at r.t. overnight. The mixture was cooled on an ice-bath, and MeOH (1 ml) was added dropwise to destroy the excess of LiAlH₄. Stirring was continued, until the gas evolution had ceased. The precipitate formed was filtered off, washed with Et₂O (5×5 ml), the filtrate was concentrated, and the crude product was purified by chromatography (prep. TLC (CH₂Cl₂/MeOH 15 :1)) to afford **15a** (122 mg, 76%). Colorless solid. TLC (SiO₂, CH₂Cl₂/MeOH 15 :1): R_f 0.30. M.p. 57–58°. ¹H-NMR (CDCl₃): 3.56 (br. *s*, CH₂O); 2.49–2.43 (*m*, 6 H, (CH₂)₂NCH₂); 1.68–1.64 (*m*, 4 H); 1.54–1.43 (*m*, 4 H); 1.26 (br. *s*, 60 H); 0.88 (*t*, *J* = 6.9, 2 Me). ¹³C-NMR (CDCl₃): 62.56 (OCH₂); 54.58 (NCH₂); 53.61 (NCH₂(CH₂)₁₆); 32.54 (br. *s*, CH₂CH₂OH); 31.30 (MeCH₂CH₂); 29.67, 29.63, 29.60, 29.50, 29.33, 27.62 (NCH₂CH₂(CH₂)₁₅); 26.05 (br. *s*, NCH₂CH₂); 25.71 (N(CH₂)₂CH₂(CH₂)₁₄); 22.65 (MeCH₂); 14.05 (Me). ESI-MS: 522.7 ([$M - C_4H_8 + H$]⁺), 594.8 ([M + H]⁺).

2-Cyanoethyl 4-(Dioctadecylamino)butyl N,N-Diisopropylphosphoramidite (15b). A soln. of 15a (154 mg, 0.26 mmol) in CH₂Cl₂ (5 ml) under Ar was treated with *Hünig*'s base (101 mg, 0.78 mmol). The resulting mixture was cooled in an ice-bath, and (chloro)(2-cyanoethoxy)(diisopropylamino)phosphine (123 mg, 0.56 mmol) was added, and the mixture was stirred for 20 min with cooling and then for 1 h at r.t. The resulting colorless clear soln. was diluted with CH₂Cl₂ (40 ml), washed with an ice-cold aq. NaHCO₃ soln. and brine, and dried (Na₂SO₄) and concentrated. The resulting oil was chromatographed $(SiO_2; eluted with benzene/Et_2O/Et_3N 80:10:1)$ to give 2 (191 mg, 93%) from the first three fractions upon evaporation. Colorless oil. ¹H-NMR (CDCl₃, 500 MHz): 3.91-3.79 (*m*, OCH₂); 3.72-3.58 (*m*, OCH_2 , 2 NCH); 2.65 (t, J = 6.55, NCCH₂); 2.44 - 2.41 (m, NCH₂); 2.40 - 2.37 (m, 2 NCH₂); 1.65 - 1.60 (m, 2 NCH₂); 1 OCH₂CH₂); 1.54-1.48 (m, NCH₂CH₂); 1.45-1.39 (m, 2 NCH₂CH₂); 1.35-1.1.27 (m, CH₂); 1.27 (br. s, CH₂); 1.20 (d, J = 6.65, CH(Me)₂); 1.19 (d, J = 6.65, CH(Me)₂); 0.90 (t, J = 6.65, 2 MeCH₂). ¹³C-NMR $(CDCl_{3}, 125 \text{ MHz})$: 117.53 $(C \equiv N)$; 63.72 $(d, {}^{2}J(C,P) = 17.1, CH_{2}OP)$; 58.32 $(d, {}^{2}J(C,P) = 19.0, CH_{2}OP)$; 54.25 (2 CH₂N); 53.91 (CH₂N); 43.51 (d, ²J(C,P) = 12.4, 2 CHNP); 31.90 (2 CH₂CH₂Me); 29.68, 29.37, 29.33, 27.66 (2 CH₂CH₂N); 27.16 (2 CH₂(CH₂)₂N); 24.65 (CHMe); 24.59 (2 CHMe); 24.52 (CHMe); 23.59 (CH_2CH_2N); 22.66 (2 Me CH_2); 20.34 (d, ${}^{3}J(C,P) = 6.7$, CH_2CH_2OP); 14.06 (2 Me). ${}^{31}P$ -NMR $(CDCl_3, 202.5 \text{ MHz})$: 147.42. ESI-MS (calc. 793): 711.7 $([M - N^{i}Pr_2 + OH + H]^+)$, 741.8 $([M - N^{i}Pr_2 + OH + H]^+)$ $O(CH_2)_2CN + OH + H]^+$, 810.8 ([$M + O + H]^+$).

4-(*Dioctadecylamino*)[1,1,4,4-2 H_4]*butan*-1-*ol* (**16**). Powdered LiAlD₄ (109 mg, 2.6 mmol) was added portionwise during 2 min to a pre-cooled (ice-bath) soln. of **14** (206 mg, 0.32 mmol) in THF (4 ml), and the resulting suspension was stirred at r.t. overnight. The mixture was cooled in an ice-bath, diluted with Et₂O (10 ml), and MeOH (1 ml) was added dropwise to destroy an excess of LiAlD₄. Stirring was continued, until gas evolution had ceased (10 min). The precipitate formed was filtered off, washed with Et₂O (5 × 5 ml), the filtrate was concentrated, and the crude product was suspended in CH₂Cl₂. The resulting precipitate was filtered off and washed with CH₂Cl₂ (5 × 1 ml). The filtrate was concentrated resulting in the formation of **16** (145 mg, 75%). White solid²). TLC (SiO₂; CH₂Cl₂/MeOH 8 :1): R_f 0.60. M.p. 59–60°. ¹H-NMR (CDCl₃): 2.46–2.42 (*m*, (CH₂)₂NCD₂); 1.66–1.62 (*m*, 4 H); 1.51–1.46 (*m*, 4 H); 1.27 (br. *s*, 60 H); 0.89(*t*, *J* = 6.9, 2 Me). ¹³C-NMR (CDCl₃): 61.89 (*quint*, *J*(C,D) = 20.5, OCD₂); 53.98 (*quint*, *J*(C,D) = 21.1, NCD₂); 53.71 (NCH₂); 32.51 (br. *s*, CH₂CD₂OH); 31.90 (MeCH₂CH₂); 29.67, 29.63, 29.61, 29.53, 29.33, 27.66 (NCH₂CH₂); 26.13 (br. *s*, NCD₂CH₂); 25.93 (N(CH₂)₂CH₂(CH₂)₁₄); 22.66 (MeCH₂); 14.05 (Me). ESI-MS: 522.7 ([$M - C_4H_4D_4 + H$]⁺), 598.8 ([M + H]⁺).

N-(4-Chlorobut-2-yn-1-yl)-N-octadecyloctadecan-1-amine (**18**). Compound **1** (2.08 g, 4.0 mmol), 1,4dichlorobut-2-yne **17**, 1.48 g, 12 mmol), and Na₂CO₃ (1.69 g, 16 mmol) were suspended in benzene (40 ml) and stirred at $65-70^{\circ}$ (bath) overnight (16 h), until the reaction was completed (NMR analysis: amine **1**: 2.66 ppm, product **18**: 2.44 ppm). The light-brown mixture was concentrated, diluted with Et₂O, inorganic salts and residual starting amine **1** were filtered off and washed with pre-cooled Et₂O (+5°, 20 ml). The filtrate was concentrated resulting in the formation of 2.1 g of a beige solid mass. The product **18** was isolated by CC (SiO₂; (100 g); CH₂Cl₂/Et₂O 4:1; 400 ml) as a light beige mass (1.57 g, 60.5%), followed by other products (in order of their elution from the column): N,N,N',N'-*tetraoctadecylbut-2-yne-1,4-diamine* (**19**), *4-chlorobut-2-yn-1-ol* (**20**), and bis(*4-chlorobut-2-ynyl*)*diocta-decylammonium chloride* (**21**).

Data of **18**. TLC (SiO₂; CH₂Cl₂): R_f 0.45. M.p. 51–52°. ¹H-NMR (CDCl₃): 4.18 (t, J = 1.83, CH₂Cl); 3.44 (t, J = 1.83, NCH₂C≡); 2.47–2.44 (m, 2 CH₂CH₂N); 1.48–1.41 (m, 2 CH₂CH₂N); 1.28 (br. s, 60 H); 0.90 (t, J = 6.9, 2 Me). ¹³C-NMR (CDCl₃): 82.45 (CIC–C≡); 79.31 (CIC–C≡C); 53.83 (NCH₂CH₂); 42.19 (NCH₂C≡); 31.92 (CH₂CH2 Me); 30.60 (CH₂Cl); 29.70, 29.65, 29.56 (CH₂CH₂CH2 Me); 29.35 (CH₂(CH₂)₃N); 27.52 (CH₂CH₂N); 27.46 (CH₂(CH₂)₂N); 22.66 (MeCH₂); 14.03 (Me). ESI-MS (calc. 607(³⁵Cl)): 608.7 ([M(³⁵Cl) + H]⁺), 609.7, 610.7 ([M(³⁷Cl) + H]⁺), 611.7. Anal. calc. for C₄₀H₇₈ClN (608.53): C 78.95, H 12.92, N 2.30; found: C 78.73, H 12.97, N 2.15.

Data of **19**. TLC (SiO₂; CH₂Cl₂): R_f 0.40. M.p. 55–56°. ¹H-NMR (CDCl₃): 3.43 (*s*, 2 NCH₂C≡); 2.47–2.44 (*m*, 4 CH₂CH₂N); 1.48–1.41 (*m*, 4 CH₂CH₂N); 1.27 (br. *s*, 120 H); 0.90 (*t*, *J*=6.9, 4 Me). ¹³C-NMR (CDCl₃): 79.36 (C≡C); 53.95 (NCH₂CH₂); 41.97 (NCH₂C≡); 31.91 (CH₂CH2 Me); 29.70, 29.66, 29.64, 29.34, 27.61, 27.52, 22.66 (MeCH₂); 14.06 (Me). ESI-MS (calc. 1092): 548.7 ([*M* + 2 H]²⁺).

Data of **20**⁶). TLC (SiO₂, CH₂Cl₂/Et₂O 1:1): R_f 0.31. ¹H-NMR (CDCl₃): 4.34 (t, J = 1.75, CH₂O); 4.19 (t, J = 1.75, CH₂Cl).

Data of **21.** ¹H-NMR (CDCl₃): 4.97 (s, $2 \equiv CCH_2N^+$); 4.21 (s, $2 CH_2Cl$); 3.60–3.56 (m, $2 CH_2CH_2N^+$); 1.91–1.86 (m, $2 CH_2CH_2N^+$); 1.27 (br. s, 120 H); 0.90 (t, J = 6.9, 4 Me).

N-Octadecyl-N,N-diprop-2-yn-1-ylamine (= N,N-Di(prop-2-yn-1-yl)octadecan-1-amine; **24**). 3-Bromoprop-1-yne (**23**; 3.57 g, 30 mmol) and K₂CO₃ (4.14 g, 30 mmol) were added consecutively to a stirred suspension of octadecylamine (**22**; 2.69 g, 10 mmol) in MeOH (20 ml) in a bottle with a screw stopper. The resulting mixture was stirred at r.t. overnight. The brown suspension was filtered through a SiO₂ layer (1 cm), washed with AcOEt (100 ml), and the filtrate was concentrated to give **24** (3.34 g, 96%). Viscous mass, which solidified upon standing. The product is pure enough for further reactions, however, it could be easily purified for anal. purpose by filtration through a SiO₂ (5 cm; with hexane/AcOEt 15:1). TLC (hexane/AcOEt, 2:2): R_f 0.85. M.p. 43–44° (MeOH). ¹H-NMR (CDCl₃): 3.45 (d, J = 2.3, NCH₂C \equiv); 2.54–2.51 (m, NCH₂(CH₂)₁₆); 2.22 (t, J = 2.3, CH \equiv); 1.51–1.44 (m, 2 H); 1.27 (br. s, 30 H); 0.90 (t, J = 6.5, Me). ¹³C-NMR (CDCl₃): 78.91 (CH \equiv C); 72.72 (CH \equiv); 53.05 (NCH₂(CH₂)₁₆); 42.08 (NCH₂C \equiv); 31.90, 29.66, 29.59, 29.55, 29.48, 29.32, 27.45, 27.32, 22.65 (MeCH₂); 14.05 (Me). ESI-MS: 384.4 ([M + K]⁺), 346.4 ([M + H]⁺), 318.3 ([M – C₂H₄ + H]⁺), 270.3 ([M – C₆H₄ + H]⁺).

4-(Octadecylamino)-4-oxobutanoic acid (25). Powdered 12 (0.440 g, 4.4 mmol) was added in portions to a stirred soln. of 22 (1.076 g, 4 mmol) in CH₂Cl₂ (20 ml) at r.t., followed by Et₃N (0.808 g, 8 mmol). The resulting white suspension was stirred for 3 h until dissolution of the precipitate. The clear colorless soln. was concentrated *in vacuo*, and the residue was crystallized from acetone to afford 25 (1.277 g, 87%). White crystals. Chromatographic separation of the concentrated mother liquid (SiO₂ (10 g)); CH₂Cl₂/MeOH 1:1) gave a further amount of 25 (0.088 g, 6%). TLC (SiO₂, CH₂Cl₂/MeOH 8:1): R_f 0.64. M.p. 124–125°. ¹H-NMR (CDCl₃): 5.69 (br. *s*, NH); 3.31–3.27 (*m*, NCH₂); 2.73–2.71 (*m*, NCH₂); 2.56–2.54 (*m*, O=CCH₂); 1.56–1.51 (*m*, NCH₂CH₂(CH₂)₁₅); 1.31 (br. *s*, 2 H); 1.28 (br. *s*, 28 H); 0.90 (*t*, *J* = 6.9, Me). ¹³C-NMR: 173.02 (COO); 170.90 (CON); 40.05 (NCH₂); 31.90 (MeCH₂CH₂); 30.75, 30.08, 29.66, 29.63, 29.59, 29.54, 29.49, 29.39, 29.32, 29.21, 26.83 (NCH₂CH₂CH₂); 22.65 (MeCH₂); 14.05 (Me). ESI-MS: 370.4 ([*M* + H]⁺).

Methyl 4-(Octadecylamino)-4-oxobutanoate (**26**). Me₂SO₄ (0.454 g, 3.6 mmol) and K₂CO₃ (1.01 g, 7.4 mmol) were added consecutively to a stirred soln. of **25** (0.680 mg, 1.8 mmol) in acetone (4 ml) at r.t., and the resulting suspension was heated at 55° overnight. The mixture was cooled to r.t., all solids were filtered off, washed with acetone (5 ml), the filtrate was concentrated, and the residue was dissolved in CH₂Cl₂ (5 ml). The soln. was washed with H₂O (2 × 5 ml), dried (Na₂SO₄), and concentrated to give **26** (0.502 mg, 72%). Light-cream crystals. TLC (hexane/AcOEt 1:1): R_f 0.50. M.p. 86–87° ([14]: 86.5–87.5°). ¹H-NMR (CDCl₃): 5.60 (br. *s*, 0.8 H, NH); 5.35 (br. *s*, 0.2 H, NH); 3.69 (*s*, MeO); 3.23 (*q*, *J* = 6.75, NCH₂); 2.68 (*t*, *J* = 6.75, COCH₂); 2.46 (*t*, *J* = 6.75, COCH₂); 1.59 (br. *s*, 2 H); 1.54–1.44 (*m*,

⁶) The ¹H- and ¹³C-NMR spectra are in agreement with those reported [13].

2 H); 1.26 (br. *s*, 28 H); 0.88 (*t*, *J* = 6.8, *Me*CH₂). ¹³C-NMR (CDCl₃): 173.54 (COO); 171.28 (CON); 51.79 (MeO); 39.72 (NCH₂); 31.92, 31.14 (NCOCH₂); 29.69, 29.65, 29.59, 29.54, 29.48, 29.34, 29.28, 26.88 (NCH₂CH₂CH₂); 22.67 (MeCH₂); 14.08 (Me). ESI-MS: 406.3 ($[M + Na]^+$), 384.4 ($[M + H]^+$).

1-Octadecylpyrrolidine (28). Powdered LiAlH₄ (80 mg, 2.08 mmol) was added portionswise to a precooled (ice-bath) soln. of 26 (100 mg, 0.26 mmol) in THF (3 ml), and the resulting suspension was stirred at r.t. during 5 h. The resulting grey suspension was cooled on an ice-bath, diluted with Et₂O (6 ml), and MeOH (1 ml) was added dropwise. The resulting mixture was stirred for 30 min until the formation of a crystalline precipitate was completed. Solids were separated, washed with Et₂O (2×5 ml), and the filtrate was concentrated *in vacuo* to yield 28 (60 mg, 71%). Yellowish solid mass. TLC (CH₂Cl₂/MeOH 10:1): R_f 0.46. M.p. 25–27° ([15]: 26–27°). ¹H-NMR (CDCl₃): 2.49 (br. *s*, 2 N(CH₂CH₂)₂); 2.43–2.40 (*m*, NCH₂(CH₂)₁₆); 1.78 (br. *s*, N(CH₂CH₂)₂); 1.54–1.46 (*m*, NCH₂CH₂)₁₆); 1.30–1.26 (*m*, 30 H); 0.89 (*t*, *J* = 6.8, Me). ¹³C-NMR (CDCl₃): 56.72 (NCH₂(CH₂)₁₆); 54.21 (N(CH₂CH₂)₂); 31.89 (MeCH₂CH₂); 29.66, 29.59, 29.32, 29.02, 27.72, 23.38 (N(CH₂CH₂)₂); 22.65 (MeCH₂); 14.05 (Me). ESI-MS: 324.4 ([*M* + H]⁺), 296.3 ([*M* – C₂H₄ + H]⁺).

4-Hydroxy-N-octadecylbutanamide (29). Powdered LiAlH₄ (182 mg, 4.8 mmol) was added in portions during 3 min to a pre-cooled (ice-bath) stirred suspension of 25 (222 mg, 0.6 mmol), dissolved in THF (10 ml). After 15 min, the cooling bath was removed, and stirring was continued at r.t. for another 5 h. The mixture was cooled on an ice-bath, diluted with Et₂O (20 ml), and MeOH (1 ml) and H₂O (1 ml) were added dropwise until the gas evolution had ceased, and the violet suspension turned into a white precipitate. It was filtered off, washed with Et₂O, filtrates were concentrated, and the residue was separated by prep. TLC (SiO₂; CH₂Cl₂/MeOH 8:1) to give 29 (175 mg, 82%). Colorless crystals. TLC (CH₂Cl₂/MeOH 9:1): R_f 0.42. M.p. 86–87° ([16] 86–87°). ¹H-NMR (CDCl₃): 5.73 (br. *s*, NH); 3.72–3.70 (*m*, CH₂O); 3.25 (*q*, *J* = 6.7, NCH₂); 2.37–2.34 (*m*, CH₂C=O); 1.81 (*quint.*, *J* = 6.2, CH₂CH₂CH₂C); 1.27 (br. *s*, 30 H); 0.89 (*t*, *J* = 6.8, Me). ¹³C-NMR (CDCl₃): 173.03 (C=O); 62.37 (COH); 39.71 (NCH₂); 34.06 (COCH₂); 31.89, 29.66, 29.62, 29.57, 29.52, 29.32, 29.26, 28.17 (NCH₂CH₂); 26.91 (N(CH₂)₂CH₂); 22.64 (MeCH₂); 14.06 (Me). ESI-MS: 356.3 ([*M* + H]⁺).

4-(Octadecylamino)butan-1-ol (27). Powdered LiAlH₄ (340 mg, 8 mmol) was added in portions during 10 min to a pre-cooled (ice-bath) stirred suspension of 24 (371 mg, 1 mmol) in Et₂O (20 ml). After 5 min, the cooling bath was removed, and stirring was continued at r.t. for another 1 h and then at 35° overnight. The mixture was cooled on an ice-bath, diluted with Et₂O (20 ml), and H₂O (0.5 ml) was added dropwise until the gas evolution had ceased; the grey suspension turned into a white precipitate. It was filtered off and washed with Et₂O. The filtrates were concentrated, and the white residue was separated by prep. TLC (SiO₂; CH₂Cl₂/MeOH 8:1) to give 27 (288 mg, 84%) as colorless crystals, followed by 29 (22 mg, 6%). TLC (CH₂Cl₂/Et₂O 1:1): R_f 0.42. M.p. 68–69° ([17]: 68–70°). ¹H-NMR (CDCl₃): 3.60–3.58 (*m*, CH₂O); 2.67–2.65 (*m*, NCH₂); 2.63–2.60 (*m*, NCH₂); 1.72–1.67 (*m*, CH₂); 1.65–1.58 (*m*, CH₂, OH); 1.52–1.48 (*m*, CH₂); 1.26 (br. *s*, 30 H); 0.88 (*t*, *J* = 6.8, Me). ¹³C-NMR (CDCl₃): 61.53 (COH); 47.90, 47.80 (NCH₂); 31.90 (MeCH₂CH₂); 29.68, 29.63, 29.60, 29.53, 29.44, 29.33, 29.07, 26.80, 25.96 (NCH₂CH₂); 23.66 (OCH₂CH₂CH₂); 22.65 (MeCH₂); 14.06 (Me). ESI-MS: 270.4 (H₃C(CH₂)₁₇NH₃⁺), 314.4 ([*M*–28 + H]⁺), 342.7 ([*M* + H]⁺).

4-[Octadecyl(prop-2-yn-1-yl)amino]butan-1-ol (**30**). Compound **23** (21 mg, 0.18 mmol) was added to a stirred suspension of K₂CO₃ (25 mg, 0.18 mmol) of a soln. of **27** (30 mg, 0.09 mmol) in MeOH (1 ml) at r.t. The resulting mixture was stirred overnight. The resulting precipitate was filtered off, washed with AcOEt (3 ml), the filtrate was concentrated *in vacuo*, and CC (SiO₂; CH₂Cl₂/Et₂O 1:1) gave **30** (20 mg, 61%). Colorless crystals. TLC (CH₂Cl₂/Et₂O 1:1): R_f 0.32. M.p. 33–34°. ¹H-NMR (CDCl₃): 3.59 (br. *s*, CH₂O); 3.48 (br. *s*, CH₂C≡); 2.61–2.59 (*m*, NCH₂); 2.58–2.55 (*m*, 2 H, NCH₂(CH₂)₁₅); 2.21 (br. *s*, CH≡); 1.66 (br. *s*, CH₂CH₂O); 1.56–1.46 (*m*, NCH₂CH₂); 1.26 (br. *s*, 30 H); 0.88 (*t*, *J* = 6.7, Me). ¹³C-NMR (CDCl₃): 73.80 (CH≡); 62.63 (CH₂OH); 53.87, 53.61 (NCH₂); 40.94 (NCH₂C≡); 31.90, 30.32 (OCH₂CH₂); 29.66, 29.62, 29.59, 29.53, 29.43, 29.32, 27.40, 26.83, 25.25 (OCH₂CH₂OH); 54.65, 54.49 (NCH₂); 14.06 (Me). ¹³C-NMR (C₆D₆): 78.88 (CH≡C); 73.97 (CH≡); 63.25 (CH₂OH); 54.65, 54.49 (NCH₂); 41.87 (NCH₂C≡); 32.93, 32.76 (OCH₂CH₂); 32.79, 30.72, 30.58, 30.41, 28.40, 28.29, 26.00, 23.70 (MeCH₂); 14.94 (Me). ESI-MS: 308.4 ([*M* – C₄H₈O + H]⁺), 362.4 ([*M* – H₂O + H]⁺), 380.4 ([*M* + H]⁺).

5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-2'-deoxy-3,4-dihydrothymidine (**37**). 2'-Deoxythymidine (**31**; 0.726 g, 3.0 mmol) was added portionwise at r.t. to a yellowish clear soln. of 4,4'-dimethoxytrityl chloride (1.220 g, 3.6 mmol) in pyridine (15 ml), and the resulting orange mixture was stirred overnight. It was diluted with AcOEt (80 ml), washed with H₂O (3×25 ml), dried (Na₂SO₄), and concentrated *in vacuo* to give an orange viscose mass (2.0 g). The product **37** was isolated by CC (SiO₂, 120 g; hexane/ AcOEt 2 :1 to 0 :1; 120 ml) as a light-yellow oil (1.52 g, 93.8%), which solidified on standing at r.t. TLC (SiO₂, AcOEt): R_f 0.5. M.p. 123–125° ([18a]: 122–124°). ¹H-NMR (CDCl₃): 9.67 (br. *s*, NH); 7.60 (*s*, H–C(6)); 7.41 (*d*, *J* = 7.9, 2 arom. CH); 7.31–7.28 (*m*, 6 H); 7.21 (*t*, *J* = 7.2, 1 arom. CH); 6.83 (*d*, *J* = 8.7, 4 arom. CH); 6.45–6.41 (*m*, H–C(1′)); 4.58–4.56 (*m*, H–C(3′)); 4.11–4.07 (*m*, H–C(4′)); 3.77 (*s*, 2 MeO); 3.47–3.35 (q_{AB} , δ (H_A) 3.46, δ (H_B) 3.37, J_{AB} = −10.5, J_{AX} = J_{BX} = 2.6, CH₂(5′)); 2.47–2.43 (*m*, 1 H of CH₂(2′)); 2.33–2.28 (*m*, 1 H of CH₂(2′)); 1.47 (*s*, Me(7)). ¹³C-NMR (CDCl₃): 164.15 (C(4)); 158.69 (MeO–C(arom.)); 150.72 (C(2)); 144.38, 135.78 (C(6)); 135.48, 135.42, 130.08, 128.14, 127.95, 127.08, 113.27, 111.24 (C(5)); 86.88 (CH₂OC); 86.37 (C(4′)); 84.85 (C(1′)); 72.38 (C(3′)); 63.67 (C(5′)); 55.21 (MeO); 40.94 (C(2′)); 11.78 (C(7)) (¹H- and ¹³C-NMR spectra are in a good agreement with those reported in [18]). ESI-MS: 567.3 ([*M* + Na]⁺), 583.3 ([*M* + K]⁺), 1111.5 ([2 *M* + Na]⁺).

5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-3'-O-[(tert-butyl)(dimethyl)silyl]-2'-deoxy-3,4-dihydrothymidine (32). 1H-Imidazole (0.52 g, 7.6 mmol) was dissolved in a soln. of 5'-O-(4,4'-dimethoxytrityl)-2'-deoxythymidine (1.36 g, 2.5 mmol) in DMF (20 ml) at r.t. The resulting mixture was cooled in an ice-bath, and a soln. of 'BuMe₂SiCl (0.57 g, 3.8 mmol) in DMF (3 ml) was added dropwise during 5 min. The cooling bath was removed, and the mixture was stirred at r.t. overnight. MeOH (10 ml) was added to destroy the excess of 'BuMe₂SiCl, and the resulting mixture was stirred for 30 min, diluted with AcOEt (200 ml), washed consecutively with aq. NaHCO₃ and H₂O, and dried (Na₂SO₄) and concentrated to give crude 32 (1.95 g) as a colorless viscous oil²), which was purified by CC (SiO₂ (200 g); hexane/AcOEt/ Et₃N 15:15:1), to give pure **32** (1.45 g, 88%) as a colorless viscose oil, which turned to a solid foam on drying in high vacuum⁷). TLC (SiO₂; hexane/AcOEt 2:1): R_f 0.29. M.p. 87-88°. ¹H-NMR (CDCl₃): 8.46 (*s*, NH); 7.64 (*s*, H–C(6)); 7.43 (*d*, *J* = 7.9, 2 arom. CH); 7.33 – 7.29 (*m*, 6 arom. CH); 7.27 – 7.24 (*m*, 1 arom. H); 6.85 (d, J=8.8, arom. CH); 6.37-6.34 (m, H-C(1')); 4.54-4.52 (m, H-C(3')); 3.98-3.95 (m, H-C(4')); 3.79 (s, 2 MeO); 3.50-3.24 (q_{AB} , H_A = 3.46, H_B = 3.27, J_{AB} = -10.6, J_{AX} = J_{BX} = 2.8, CH₂(5')); $2.37 - 2.32 (m, CH_2(2')); 2.25 - 2.21 (m, CH_2(2')); 1.51 (s, Me(7)); 0.84 (s, SiCMe_3); 0.03 (s, SiMe); -0.03$ (s, SiMe). ¹³C-NMR (CDCl₃): 163.61 (C(4)); 158.76 (MeOC(arom.)); 150.18 (C(2)); 144.35, 135.58 (C(6)); 135.50, 135.46, 130.06, 130.04, 128.14, 127.95, 127.11, 113.28, 113.27, 110.98 (C(5)); 86.84 (CH₂OC); 86.80 (C(4')); 84.90 (C(1')); 72.11 (C(3')); 62.94 (C(5')); 55.23 (MeO); 41.54 (C(2')); 25.70 (SiCMe); 17.92 (SiC); 11.86 (C(7)); -4.69, -4.88 (SiMe) (¹H- and ¹³C-NMR spectra are in a good agreement with those reported in [19]). ESI-MS: 681.4 ($[M + Na]^+$), 697.4 ($[M + K]^+$).

2'-Deoxy-3-[4-(dioctadecylamino)but-2-yn-1-yl]-3,4-dihydrothymidine (33). Compound 31 (32 mg, 0.132 mmol), DMSO (0.1 ml), and K₂CO₃ (36 mg, 0.264 mmol) were consecutively added to a stirred soln. of 18 (80 mg, 0.132 mmol) in THF (0.5 ml) at r.t. in a bottle with a screw stopper, and the mixture was stirred at 70° during 48 h. The resulting brown mixture was cooled to r.t., treated with H₂O (4 ml) and Et₂O (4 ml), the org. phase was separated, and the H₂O phase was extracted with Et₂O (4 ml). Combined org. phases were washed with H₂O, dried (Na₂SO₄), concentrated, and prep. TLC (SiO₂; AcOEt) afforded **33** (49 mg, 46%). Yellow oil. TLC (AcOEt): $R_{\rm f}$ 0.33. M.p. 49–50°. ¹H-NMR (CDCl₃): 7.49 (s, H–C(6)); 6.24 (t, J = 6.7, H–C(1')); 4.72 (s, CONCH₂C \equiv); 4.58–4.56 (m, H–C(3')); 4.00–3.98 (m, H-C(4')); 3.92-3.83 $(q_{AB}, \delta(H_A) 3.91, \delta(H_B) 3.84, J_{AB} = -11.8, J_{AX} = J_{BX} = 2.8, CH_2(5')); 3.33$ (s, $CH_2NCH_2C \equiv$); 2.47–2.41 (m, N(CH₂)₂); 2.34–2.32 (m, CH₂(2')); 1.99 (s, Me(7)); 1.44–1.40 (m, 4 H); 1.27 (br. s, 60 H); 0.89 (t, J = 6.9, 2 $MeCH_2$). ¹³C-NMR (CDCl₃): 162.36 (C(4)); 150.24 (C(2)); 134.92 (C(6)); 110.30 (C(5)); 87.26 (C(4')); 86.86 (C(1')); 71.43 (C(3')); 62.33 (C(5')); 53.68 (NCH₂(CH₂)₁₆); 42.25 (NCH₂C \equiv); 40.25 (CHCH₂CH); 31.90 (MeCH₂CH₂); 30.74 (CONCH₂); 29.68, 29.63, 29.55, 29.33, 27.48 (NCH₂CH₂); 27.07 (N(CH₂)₂CH₂); 22.65 (MeCH₂); 14.06 (MeCH₂); 13.22 (C(7)). ¹³C-NMR (CD₃OD): 164.36 (C(4)); 151.64 (C(2)); 136.73 (C(6)); 110.69 (C(5)); 89.06 (C(4')); 87.28 (C(1')); 81.09 $(C \equiv); 77.77 \ (C \equiv); 72.11 \ (C(3')); 62.77 \ (C(5')); 54.82 \ (NCH_2(CH_2)_{16}); 42.76 \ (NCH_2C \equiv); 41.49$

⁷) The compound **32** is sensitive to acids including SiO_2 , and addition of Et_3N into the elution mixture improves the isolated yield.

 $(CHCH_2CH)$; 33.06 $(MeCH_2CH_2)$; 31.52 $(CONCH_2)$; 30.75, 30.66, 30.64, 30.51, 30.44, 28.53 (NCH_2CH_2) ; 27.81 $(N(CH_2)_2CH_2)$; 23.71 $(MeCH_2)$; 14.41 $(MeCH_2)$; 13.13 (C(7)). ESI-MS: 814.7 $([M+H]^+)$.

5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-2'-deoxy-3-[4-(dioctadecylamino)but-2-yn-1-yl]-3,4dihydrothymidine (34) from 33. A soln. of 4,4'-dimethoxytrityl chloride (13.4 mg, 0.039 mmol) in pyridine (0.1 ml) was added to a pre-cooled (ice-bath) soln. of 33 (28 mg, 0.034 mmol), and the resulting orange soln. was stirred at r.t. 48 h. The mixture was diluted with CH₂Cl₂ (2 ml), concentrated in vacuum (0.05 Torr), and the residue was separated by prep. TLC $(20 \times 20 \text{ cm}, \text{SiO}_2; \text{CH}_2\text{Cl}_2/\text{AcOEt/Et}_3\text{N} 40:9:1)$ to give in the 3rd fraction 34 (28 mg, 73%). Yellowish oil. TLC (SiO₂, CH₂Cl₂/AcOEt/Et₃N 40:9:1): $R_{\rm f}$ 0.44. ¹H-NMR (CDCl₃): 7.55 (s, H–C(6)); 7.42–7.41 (m, 2 arom. H); 7.32–7.30 (m, 6 arom. H); 7.26–7.24 (m, 1 arom. H); 6.86–6.84 (m, 2 arom. H); 6.43 (t, J = 6.6, H-C(1')); 4.74 $(s, CONCH_2C \equiv)$; 4.58–4.55 $(m, H-C(3')); 4.05-4.03 (m, H-C(4')); 3.81 (s, 2 MeO); 3.52-3.39 (q_{AB}, \delta(H_A) 3.45, \delta(H_B) 3.40, J_{AB} = 0.000 (m, H-C(3')); 3.81 (s, 2 MeO); 3.52-3.39 (q_{AB}, \delta(H_A) 3.45, \delta(H_B) 3.40, J_{AB} = 0.000 (m, H-C(3')); 3.81 (s, 2 MeO); 3.52-3.39 (q_{AB}, \delta(H_A) 3.45, \delta(H_B) 3.40, J_{AB} = 0.000 (m, H-C(3')); 3.81 (s, 2 MeO); 3.52-3.39 (q_{AB}, \delta(H_A) 3.45, \delta(H_B) 3.40, J_{AB} = 0.000 (m, H-C(3')); 3.81 (s, 2 MeO); 3.52-3.39 (q_{AB}, \delta(H_A) 3.45, \delta(H_B) 3.40, J_{AB} = 0.000 (m, H-C(3')); 3.81 (s, 2 MeO); 3.52-3.39 (m, H-C(3')); 3.81 (s, 2 MeO); 3.52-3.39 (m, H-C(3')); 3.45, \delta(H_B) 3.40, J_{AB} = 0.000 (m, H-C(3')); 3.81 (s, 2 MeO); 3.52-3.39 (m, H-C(3')); 3.45, \delta(H_B) 3.40, J_{AB} = 0.000 (m, H-C(3')); 3.51 (m, H-C(3')); 3.$ $-10.5, J_{AX} = 3.3, J_{BX} = 3.1, CH_2(5')$; 3.36 (s, CH₂NCH₂C \equiv); 2.47–2.41 (m, N(CH₂)₂); 2.34–2.29 (m, $NCHCH_2$; 1.57 (s, Me(7)); 1.46–1.40 (m, 4 H); 1.27 (br. s, 60 H); 0.89 (t, $J = 6.9, 2 MeCH_2$). ¹³C-NMR (CDCl₃): 162.46 (C(4)); 158.78 (COMe); 150.21 (C(2)); 144.32 (OCC(arom.)); 135.40 (OCC(arom.)); 133.69 (C(6)); 130.06 (arom. CH); 128.12 (arom. CH); 127.14 (arom. CH); 113.31 (arom. CH); 110.38 (C(5)); 86.99 (OCC(arom.)); 85.84 (C(4')); 85.30 (C(1')); 72.36 (C(3')); 63.43 (C(5')); 55.23 $(NCH_2(CH_2)_{16}); 53.72 (MeO); 42.35 (NCH_2C \equiv); 41.03 (C(2')); 31.90 (MeCH_2CH_2); 30.76 (CONCH_2);$ 29.69, 29.65, 29.60, 29.33, 27.52 (NCH₂CH₂); 27.41, 22.66 (MeCH₂); 14.07 (MeCH₂); 12.60 (C(7)). ¹³C-NMR (C₆D₆): 161.89 (C4)); 159.03 (COMe); 150.11 (C(2)); 144.88 (OCC(arom.)); 135.63 (OCC(arom.)); 133.40 (C(6)); 130.21 (arom. CH); 128.30 (arom. CH); 126.99 (arom. CH); 113.30 (arom. CH); 109.93 (C(5)); 86.87 (OCC(arom.)); 85.89 (C(4')); 85.45 (C(1')); 79.78 (C=); 77.59 (C=); $71.90 (C(3')); 63.64 (C(5')); 54.48 (NCH_2(CH_2)_{16}); 53.70 (MeO); 42.12 (NCH_2C\equiv); 40.72 (CHCH_2CH);$ 31.96 (MeCH₂CH₂); 30.64 (CONCH₂); 29.84, 29.75, 29.72, 29.44, 27.75 (NCH₂CH₂); 27.49, 22.72 $(MeCH_2)$; 13.96 $(MeCH_2)$; 12.56 (C(7)). ESI-MS: 1116.9 $([M+H]^+)$.

5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-2'-deoxy-3-[4-(dioctadecylamino)but-2-yn-1-yl]-3,4dihydrothymidine (**34**) from **37** A clear soln. of **37** (72 mg, 0.132 mmol) and **18** (80 mg, 0.132 mmol) in THF (0.5 ml) was diluted with DMSO (0.2 ml), then K₂CO₃ (36 mg, 0.264 mmol) was added, and the resulting mixture was stirred at 70° during 2 d. The resulting brownish mixture was cooled and treated with H₂O (5 ml), extracted with Et₂O (2 × 5 ml), washed with H₂O (2 × 2 ml), dried (Na₂SO₄), and evaporated. The crude product was purified by CC (SiO₂ 60, gradient CH₂Cl₂/MeOH 500–30:1) to give **34** (75 mg, 51 %) and starting **37** (28 mg, 39%; in order of their elution from the column). TLC (SiO₂; CH₂Cl₂/AcOEt/Et₃N 40:9:1): R_f 0.46. ¹H-NMR (CDCl₃, 500 MHz): 7.55 (*s*, H–C(6)); 7.41 (*d*, *J* = 7.65, 2 arom. CH); 7.32 – 7.30 (*m*, 6 arom. CH); 7.25 (*t*, *J* = 7.3, 1 arom. CH); 6.85 (*d*, *J* = 8.55, 4 arom. CH); 6.43 (*t*, *J* = 6.6, H–C(1')); 4.77 – 4.70 (*m*, \equiv CCH₂); 4.58 – 4.54 (*m*, H–C(3')); 4.05 – 4.02 (*m*, H–C(4')); 3.81 (*s*, 2 MeO); 3.52 – 3.38 (q_{AB} , H_A = 3.50, H_B = 3.40, J_{AB} = − 10.5, J_{AX} = J_{BX} = 3.3, CH₂(5')); 3.43 (*s*, OH); 3.36 (*s*, \equiv CCH₂); 2.47 – 2.40 (*m*, CH₂NCH₂, 1 H of CH₂(2')); 2.35 – 2.28 (*m*, 1 H of CH₂(2')); 1.57 (*s*, Me(7)); 1.47 – 1.40 (*m*, 2 NCH₂(CH₂)₁₅); 1.28 (br. *s*, 60 H); 0.90 (*t*, *J* = 6.8, MeCH₂).

5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-3'-O-[(tert-butyl)(dimethyl)silyl]-2'-deoxy-3-[4-(dioctadecylamino)but-2-yn-1-yl]-3,4-dihydrothymidine (**38**). A soln. of **32** (329 mg, 0.50 mmol) and **18** (304 mg, 0.50 mmol) in THF (4.0 ml) was diluted with DMF (5 ml); K₂CO₃ (276 mg, 2.0 mmol) and dibenzo-[18]-crown-6 (30 mg, 0.08 mmol) were added, and the resulting mixture was stirred at 60° for 2 d. The cooled brown mixture was treated with Et₂O (100 ml), washed with H₂O (4 × 15 ml) and brine, dried (Na₂SO₄), and concentrated to give **38** (589 mg, 95%). TLC (SiO₂; hexane/CH₂Cl₂/acetone/Et₃N 20:5:5:1): $R_{\rm f}$ 0.75. ¹H-NMR (CDCl₃, 500 MHz): 7.65 (*s*, H–C(6)); 7.43 (*d*, *J* = 7.65, 2 arom. CH); 7.33 – 7.29 (*m*, 6 arom. CH); 7.25 (*t*, *J* = 7.3, 1 arom. CH); 6.85 (*d*, *J* = 8.55, 4 arom. CH); 6.40 (*t*, *J* = 6.5, H–C(1')); 4.79 – 4.71 (*m*, \equiv CCH₂); 4.53 – 4.51 (*m*, H–C(3')); 4.00 – 3.98 (*m*, H–C(4')); 3.81 (*s*, 2 MeO); 3.50 – 3.27 (q_{AB} , H_A = 3.49, H_B = 3.29, J_{AB} = -10.6, J_{AX} = J_{BX} = 2.6, CH₂(5')); 3.37 (*s*, \equiv CCH₂); 2.45 – 2.42 (*m*, CH₂NCH₂); 2.38 – 2.34 (*m*, 1 H of CH₂(2')); 2.24 – 2.18 (*m*, 1 H of CH₂(2')); 1.57 (*s*, Me(7)); 1.45 – 1.39 (*m*, 2 NCH₂CH₂(h₂)₁₅); 1.28 (br. *s*, 60 H); 0.90 (*t*, *J* = 6.5, MeCH₂); 0.86 (*s*, SiCMe₃); 0.04 (*s*, SiMe); -0.02 (*s*, SiMe). ¹³C-NMR (CDCl₃, 125 MHz): 162.52 (C(4)); 130.06, 130.05 (4 arom. CH); 128.14 (2 arom. CH); 127.93 (2 arom. CH); 127.09 (arom. CH); 113.27, 113.26 (4 arom. CH); 110.22

 $\begin{array}{l} ({\rm C}(5)); 86.83 \ ({\rm OCC}({\rm arom.})); 86.74 \ ({\rm C}(1')); 85.58 \ ({\rm C}(4')); 78.94 \ (\equiv{\rm C}); 77.56 \ (\equiv{\rm C}); 72.06 \ ({\rm C}(3')); 62.92 \ ({\rm C}(5')); 55.22 \ (2 \ {\rm MeO}); 53.74 \ ({\rm CH}_2{\rm NCH}_2); 42.42 \ ({\rm CH}_2{\rm C}\equiv); 41.64 \ ({\rm C}(2')); 31.91 \ ({\rm CH}_2{\rm C}\equiv); 30.71, 29.69, \ 29.64, 29.33, 27.52, 25.69 \ ({\rm CM}e_3); 22.66 \ (2 \ {\rm MeCH}_2); 17.90 \ ({\rm SiC}); 14.07 \ (2 \ {\it MeCH}_2); 12.62 \ ({\rm C}(7)); -4.69, \ -4.89 \ (2 \ {\rm SiMe}). \ {\rm ESI-MS}: 1230.9 \ ([{\it M}+{\rm H}]^+). \end{array}$

5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-2'-deoxy-3-[4-(dioctadecylamino)but-2-yn-1-yl]-3,4dihydrothymidine (**34**) from **38**. A soln. of **38** (192 mg, 0.156 mmol) in THF (0.4 ml) was diluted with H₂O (0.05 ml), and a soln. of Bu₄NF (0.17ml, 0.156 mmol) in THF was added in one portion. The resulting clear mixture was stirred at 50° overnight. It was cooled and diluted with CH₂Cl₂ (10 ml). The aq. phase was separated, and the soln. was dried (Na₂SO₄) and concentrated. Pure **34** (135 mg, 78%) was isolated by CC (SiO₂; hexane/CH₂Cl₂/acetone/Et₃N 40:10:5:1). Beige mass TLC (SiO₂, hexane/AcOEt 2:1): $R_{\rm f}$ 0.69.

5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-3'-O-{(2-cyanoethoxy)[N,N-(diisopropyl)amino]phosphanyl]-2'-deoxy-3-[4-(dioctadecylamino)but-2-yn-1-yl]-3,4-dihydrothymidine (39). Hünig's base (47 mg, 0.36 mmol) was added to a soln. of **34** (135 mg, 0.12 mmol) in CH₂Cl₂ (3 ml) under Ar; the resulting mixture was cooled in an ice-bath, (chloro)(2-cyanoethoxy)(diisopropylamino)phosphine was added, and the mixture was stirred for 10 min with cooling, and 1 h at r.t. The resulting light yellow clear soln. was diluted with CH₂Cl₂ (30 ml), washed with a cold aq. NaHCO₃ soln. and brine, dried (Na₂SO₄), and concentrated. The resulting yellowish oil was subjected to CC (SiO₂; CH₂Cl₂/acetone/Et₃N 85:14:1) to give, from the first four fractions 39, upon evaporation as a colorless oil (142 mg, 90%) as a mixture of non-assigned (R_P) and (S_P) diastereoisomers. ¹H-NMR (CDCl₃, 500 MHz; mixture of diastereoisomers X and Y in a ratio of 2.6: 1): 7.64 (s, 0.72 H, H–C(6), X); 7.59 (s, 0.28 H, H–C(6), Y); 7.43 – 7.41 (m, 2 arom. H, X, Y); 7.33-7.28 (m, 6 arom. CH, X, Y); 7.27-7.23 (m, 1 arom. H, X, Y); 6.86-6.83 (m, 4 arom. CH, **X**, **Y**); 6.48–6.46 (*m*, 0.28 H, H–C(1'), **X**); 6.46–6.43 (*m*, 0.72 H, H–C(1'), **Y**); 4.79–4.71 (*m*, \equiv CCH₂, **X**, **Y**); 4.69–4.63 (*m*, H–C(3'), **X**, **Y**); 4.20–4.18 (*m*, 0.72 H, H–C(4'), **X**); 4.17–4.15 (*m*, 0.28 H, H–C(4'), Y); 3.81 (s, 4.3 H, 2 MeO, X); 3.80 (s, 1.68 H, 2 MeO, Y); 3.69–3.55 (m, POCH₂, 2 NCH, **X**, **Y**); 3.56-3.33 (q_{AB} , 0.72 H, δ (H_A) 3.55, δ (H_B) 3.34, $J_{AB} = -10.6$, $J_{AX} = J_{BX} = 2.6$, CH₂(5'), **X**); 3.51-3.31 (q_{AB} , 0.28 H, δ (H_A) 3.49, (δ H_B) 3.33, J_{AB} = 10.6, J_{AX} = J_{BX} = 2.6, CH₂(5'), **Y**); 3.36 (br. s, $\equiv \text{CCH}_2, \mathbf{X}, \mathbf{Y}); 2.65 - 2.61 (m, \text{CH}_2\text{CN}, \mathbf{X}, \mathbf{Y}); 2.60 - 2.55 (m, 0.28 \text{ H}, \text{CH}_2(2'), \mathbf{Y}); 2.53 - 2.48 (m, 0.72 \text{ H}, 0.72 \text{ H}); 2.65 - 2.61 (m, 0.72 \text{ H}); 2.$ CH₂(2'), X); 2.45-2.41 (m, CH₂NCH₂, X, Y); 2.35-2.29 (m, 1 H of CH₂(2'), X, Y); 1.51 (s, Me(7), X, **Y**); 1.45–1.39 (*m*, 2 NCH₂CH₂(CH₂)₁₅, **X**, **Y**); 1.28 (br. *s*, 60 H); 1.20–1.18 (*m*, 2 CHM*e*₂, **X**, **Y**); 0.91– 0.88 (*m*, *Me*CH₂, **X**, **Y**). ³¹P-NMR (CDCl₃, 202.5 MHz): 149.17, 148.54.

5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-3'-O-[(tert-butyl)(dimethyl)silyl]-2'-deoxy-3-[3-(dioctadecylamino)propyl]-3,4-dihydrothymidine (35). Powdered Ph₃P (48 mg, 0.182 mmol) was added in one portion to a stirred clear soln. of 32 (80 mg, 0.121 mmol) and 9 (70 mg, 0.121 mmol) in benzene (2 ml) at r.t. The mixture was stirred for 5 min until dissolution of all the precipitate. Then, the mixture was cooled on an ice-bath, and diisopropyl azodicarboxylate (DIAD; 37 mg, 0.182 mmol) in benzene (0.5 ml) was added dropwise within 1 min. After 5 min, the cooling bath was removed, and the mixture was stirred at r.t. overnight. The solvent was removed in vacuo, and the light-yellow solid residue was subjected to CC (SiO₂; hexane/AcOEt/Et₃N 12:6:1) to yield 34 (71 mg, 48%). Viscous yellowish mass. TLC (SiO₂; hexane/AcOEt/Et₃N 120:60:1): R_f 0.53. ¹H-NMR (CDCl₃): 7.61 (s, H–C(6)); 7.41 (d, J = 7.65, 2 arom. CH); 7.32–7.29 (*m*, 6 arom. CH); 7.23 (*t*, *J*=7.3, 1 arom. CH); 6.83 (*d*, *J*=8.55, 4 arom. CH); 6.39-6.37 (m, H-C(1')); 4.51-4.49 (m, H-C(3')); 3.97-3.92 (m, H-C(4'); CONCH₂); 3.79 (s, 2 MeO); 3.48–3.26 (q_{AB} , $\delta(H_A)$ 3.46, $\delta(H_B)$ 3.27, $J_{AB} = -10.6$, $J_{AX} = J_{BX} = 2.6$, CH₂(5')); 2.54–2.51 (m, NCH₂(CH₂)₂N); 2.42-2.39 (m, 2 NCH₂(CH₂)₁₆); 2.36-2.31 (m, 1 H of CH₂(2')); 2.21-2.17 (m, 1 H of $CH_{2}(2')$; 1.80-1.76 (m, NCH₂CH₂CH₂N); 1.55 (s, Me(7)); 1.45-1.39 (m, 2 NCH₂CH₂(CH₂)₁₅); 1.26 (br. s, 60 H; 0.88 ($t, J = 6.5, MeCH_2$); 0.84 ($s, SiCMe_3$); 0.03 (s, SiMe); -0.03 (s, SiMe). ¹³C-NMR (CDCl₃): 163.40 (C(4)); 158.70 (MeOC(arom.)); 150.79 (C(2)); 144.36 (OCC(arom.)); 135.50 (C(6)); 133.34 (OCC(arom.)); 130.03 (OCC=CH(arom.)); 128.11 (arom. CH); 127.91 (arom. CH); 127.04 (arom. CH); 113.22 (MeOCCH(arom.)); 110.11 (C(5)); 86.76 (C(4')); 86.62 (C(1')); 85.41 (CH₂OC); 72.03 (C(3')); (C(5')); 55.18 (MeO); 53.83 (NCH₂(CH₂)₁₆); 51.55 (NCH₂(CH₂)₂N); 41.58 (C(2')); 40.04 (C(2')); 40.(CONCH₂); 31.88 (MeCH₂CH₂); 29.66 ((CH₂)₁₁); 29.31 (N(CH₂)₃CH₂); 27.58 (N(CH₂)₂CH₂CH₂); 26.95 (NCH₂ CH₂(CH₂)₁₅); 25.66 (SiCMe); 24.84 (NCH₂CH₂CH₂N); 22.64 (MeCH₂); 17.87 (SiC); 14.04 $(MeCH_2)$; 12.67 (C(7)); -4.72 (SiMe); -4.94 (SiMe). ESI-MS: 522.7 ((C₁₈)₂NH₂⁺), 1221.1 ([M+H]⁺).

5'-O-[Bis(4-methoxyphenyl)(phenyl)methyl]-2'-deoxy-3-[3-(dioctadecylamino)propyl]-3,4-dihydrothymidine (36). A soln of Bu_4NF (0.05 ml, 1M in THF) was added to a soln of 35 (65 mg, 0.05 mmol) and H_2O (20 mg, 1 mmol) in THF (0.1 ml) at r.t., and the resulting mixture was stirred at 50° overnight. The solvent was removed, the residue was dissolved in CH_2Cl_2 (1 ml) and filtered through a SiO₂ layer (2 cm), washed consecutively with CH2Cl2 (40 ml), CH2Cl2/AcOEt 10:1 (40ml), and AcOEt (40 ml) to yield 36 (54 mg, 90%) from the 3rd fraction as a colorless glassy mass. TLC (SiO₂, AcOEt): R_f 0.4. ¹H-NMR (CDCl₃): 7.55 (s, H–C(6)); 7.41 (d, J=7.65, 2 arom. CH); 7.32–7.29 (m, 6 arom. CH); 7.24 (t, J=7.3, 1 arom. CH); 6.84 (d, J = 8.55, 4 arom. CH); 6.45 - 6.43 (m, H-C(1')); 4.57 - 4.54 (m, H-C(3')); 4.06 - 4.03 $(m, \text{H-C}(4')); 3.98-3.90 \ (m, \text{CONCH}_2); 3.80 \ (s, 2 \text{ MeO}); 3.50-3.37 \ (q_{AB}, \delta(\text{H}_A) = 3.49, \delta(\text{H}_B) 3.39, \delta(\text{H}_B) 3.49)$ $J_{AB} = -10.5, J_{AX} = J_{BX} = 2.9, \text{ CH}_2(5')); 2.53 - 2.50 (m, \text{NCH}_2(\text{CH}_2)_2\text{N}); 2.44 - 2.39 (m, 5 \text{ H}, 2); 2.53 - 2.50 (m, 10.5); 2.54 - 2.50 (m, 10.5); 2.55 (m, 10.5); 2.$ NCH₂(CH₂)₁₆, CH₂(2')); 2.33-2.27 (m, 1 H of CH₂(2')); 1.77 (quint., J=7.3, NCH₂CH₂CH₂N); 1.54 (s, Me(7)); 1.45–1.39 (*m*, 2 NCH₂CH₂(CH₂)₁₅); 1.27 (br. *s*, 60 H); 0.90 (*t*, J = 6.9, $MeCH_2$). ¹³C-NMR (CDCl₃): 163.39 (C4)); 158.75 (MeOC(arom.)); 150.84 (C(2)); 144.38 (OCC(arom.)); 135.49 (OC-C(arom.)); 133.34 (C(6)); 130.07 (OCC=CH(arom.)); 128.14 (arom. CH); 127.96 (arom. CH); 127.10 (arom. CH); 113.29 (MeOCCH(arom.)); 110.27 (C(5)); 86.92 (CH₂OC); 85.91 (C(4')); 85.25 (C(1')); 72.21 (3')); 63.52 (C(5')); 55.21 (MeO); 53.88 (NCH₂(CH₂)₁₆); 51.61 (NCH₂(CH₂)₂N); 41.06 (C(2')); 40.10 (CONCH₂); 31.90 (MeCH₂CH₂); 29.69 (CH₂); 29.64 (CH₂); 29.33 (N(CH₂)₃CH₂); 27.62 $(N(CH_2)_2CH_2CH_2); 26.92 (NCH_2CH_2(CH_2)_1;); 24.90 (NCH_2CH_2CH_2N); 22.66 (MeCH_2); 14.07$ (*Me*CH₂); 12.65 (C(7)). ESI-MS: 1106.9 ([*M*+H]⁺).

REFERENCES

- H. Rosemeyer, *Chem. Biodiversity* 2005, 2, 977, and lit. cit. therein; 'Cellular Drug Delivery Principles and Practice', Eds. D. R. Lu, S. Øie, Humana Press, Totowa, New Jersey, 2004; P. Dasgupta, R. Mukherjee, *Br. J. Pharmacol.* 2000, *129*, 101; C. F. Torres, D. Martin, G. Torrelo, V. Casado, O. Fernandez, D. Tenllado, L. Vazquez, M. I. Moran-Valero, G. Reglero, *Curr. Nutr. Food Sci.* 2011, *7*, 160.
- [2] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug Delivery Rev. 1997, 23, 3; A. K. Ghose, V. N. Viswanadhan, J. J. Wendoloski, J. Comb. Chem. 1999, 1, 55.
- [3] F. Seela, N. Ramzaeva, H. Rosemeyer, in 'Science of Synthesis, Vol. 16, Six-Membered Hetarenes with Two Identical Heteroatoms', Ed. Y. Yamamoto, Thieme Verlag, Stuttgart, 2003, pp. 945–1108.
- [4] K. C. Kumara Swamy, N. N. Bhuwan Kumar, E. Balaraman, K. V. P. Pavan Kumar, *Chem. Rev.* 2009, 109, 2551; T. Brossette, E. Klein, C. Créminon, J. Grassi, C. Mioskowski, L. Lebeau, *Tetrahedron* 2001, 57, 8129; F. Himmelsbach, B. S. Schulz, T. Trichtinger, R. Charubala, W. Pfleiderer, *Tetrahedron* 1984, 40, 59; E. Quezada, D. Viña, G. Delogu, F. Borges, L. Santana, E. Uriarte, *Helv. Chim. Acta* 2010, 93, 309; O. R. Ludek, C. Meier, *Synlett* 2005, 3145; O. R. Ludek C. Meier, *Synlett* 2006, 324.
- [5] D. H. Wadsworth, J. Org. Chem. 1967, 32, 1184; P. W. Erhardt, A. H. Owens, Synth. Commun. 1987, 17, 469; Y. Dong, J. Li, C. Wu, D. Oupický, Pharm. Res. 2010, 27, 1927.
- [6] J. Colonge, G. Poilane, Bull. Soc. Chim. Fr. 1955, 499.
- [7] R. Pajewski, J. Pajewska, R. Li, M. M. Daschbach, E. A. Fowler, G. W. Gokel, New J. Chem. 2007, 31, 1960.
- [8] T. H. Cronin, H. Faubl, W. W. Hoffman, J. J. Korst, US Pat. 1977, 4034040A; R. J. J. Funck, W. E. Morf, P. Schulthess, D. Ammann, W. Simon, *Anal. Chem.* 1982, 54, 423.
- [9] H. Ramloch, M. Seidel, J. Lause, K. Waldmann, US Pat. 1987, 4658052.
- [10] T. Takahashi, C. Kojima, A. Harada, K. Kono, Bioconjugate Chem. 2007, 18, 1349.
- [11] T. H. Cronin, H. Faubl, W. W. Hoffman; J. J. Korst, US Pat. 1977, 4034040; 1981, 4258061.
- [12] L. Schmitt, C. Dietrich, R. Tampé, J. Am. Chem. Soc. 1994, 116, 8485.
- [13] G. A. Molander, E. P. Cormier, J. Org. Chem. 2005, 70, 2622.
- [14] T. J. Micich, W. M. Linfield, J. K Weil, J. Am. Oil Chem. Soc. 1977, 54, 91.
- [15] J. G. Erickson, J. S. Keps, J. Am. Chem. Soc. 1955, 77, 485; W. F. Hart, M. E. McGreal, J. Org. Chem. 1957, 22, 86.

- [16] W. Reppe, Liebigs Ann. Chem. 1955, 596, 158.
- [17] T. Tokuda, S. Ikeda, Y. Kubota, Ger. Offen. 1979, DE 2918726 A1 19791115 (US Pat. 1979, 4331685).
- [18] a) P. S. Pallan, P. von Matt, C. J. Wilds, K.-H. Altmann, M. Egli, *Biochemistry* 2006, 45, 8048; b) C. Bleasdale, S. B. Ellwood, B. T. Golding, J. Chem. Soc., Perkin Trans. 1 1990, 803.
- [19] B. Algueró, E. Pedroso, V. Marchán, A. Grandas, J. Biol. Inorg. Chem. 2007, 12, 901; A. Bartoszewicz, M. Kalek, J. Stawinski, *Tetrahedron* 2008, 64, 8843.

Received October 20, 2011